Please provide the following information, and submit to the NOAA DM Plan Repository.

Reference to Master DM Plan (if applicable)

As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.

URL of higher-level DM Plan (if any) as submitted to DM Plan Repository:

1. General Description of Data to be Managed

1.1. Name of the Data, data collection Project, or data-producing Program:

2018 USGS Lidar: Prince of Wales Island - Phase 2, AK

1.2. Summary description of the data:

Product: These lidar data are processed Classified LAS 1.4 files, formatted to individual $1000 \text{ m} \times 1000 \text{ m}$ tiles; used to create intensity images, 3D breaklines, and hydroflattened DEMs as necessary.

Geographic Extent: 1 partial census area and 1 partial borough in Alaska, covering approximately 1198 total square miles.

Dataset Description: The Prince of Wales Phase II 2018 project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.35 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 2011 UTM Zone 8N, Meters and vertical datum of NAVD88 GEOID 12B, Meter. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 3977 individual 1000 m x 1000 m tiles, as tiled 2000 m x 2000 m intensity imagery, and as tiled 2000 m x 2000 m bare earth DEMs (all delivered as 1145 individual 2000 m x 2000 m tiles, except for LAS tiles). Continuous breaklines were produced in Esri file geodatabase format.

Ground Conditions: LiDAR was collected in spring and summer 2018, while minimal snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized 231 independent accuracy checkpoints, 103 in Bare Earth and Urban landcovers (103 NVA points), 128 in Tall Weeds categories (128 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

The NOAA Office for Coastal Management (OCM) downloaded this data set from this USGS site:

ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/Projects/

The datasets downloaded were:

USGS_LPC_AK_POW_P2_2018_LAS_2019/ Number of files: 3385

USGS_LPC_AK_POW_P2_TL_2018_LAS_2019/ Number of files: 570

These files were processed to the Data Access Viewer (DAV) and https. The total number of files downloaded and processed was 3955.

Hydro breaklines and building footprints are also available. These data are available for download at the link provided in the URL section of this metadata record. Please note that these products have not been reviewed by the NOAA Office for Coastal Management (OCM) and any conclusions drawn from the analysis of this information are not the responsibility of NOAA or OCM.

1.3. Is this a one-time data collection, or an ongoing series of measurements?

One-time data collection

1.4. Actual or planned temporal coverage of the data:

2018-05-06 to 2018-09-18

1.5. Actual or planned geographic coverage of the data:

W: -134.409874, E: -131.319222, N: 57.108311, S: 54.821678

1.6. Type(s) of data:

(e.g., digital numeric data, imagery, photographs, video, audio, database, tabular data, etc.) Model (digital)

1.7. Data collection method(s):

(e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy, research vessel, autonomous underwater vehicle, animal tagging, manual surveys, enforcement activities, numerical model, etc.)

1.8. If data are from a NOAA Observing System of Record, indicate name of system:

1.8.1. If data are from another observing system, please specify:

2. Point of Contact for this Data Management Plan (author or maintainer)

2.1. Name:

NOAA Office for Coastal Management (NOAA/OCM)

2.2. Title:

Metadata Contact

2.3. Affiliation or facility:

NOAA Office for Coastal Management (NOAA/OCM)

2.4. E-mail address:

coastal.info@noaa.gov

2.5. Phone number:

(843) 740-1202

3. Responsible Party for Data Management

Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below.

3.1. Name:

3.2. Title:

Data Steward

4. Resources

Programs must identify resources within their own budget for managing the data they produce.

4.1. Have resources for management of these data been identified?

Yes

4.2. Approximate percentage of the budget for these data devoted to data management (specify percentage or "unknown"):

Unknown

5. Data Lineage and Quality

NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates.

5.1. Processing workflow of the data from collection or acquisition to making it publicly accessible

(describe or provide URL of description):

Lineage Statement:

Data collected by Quantum Spatial, Inc. for the Alaska Dept of Natural Resources. OCM downloaded the data from the USGS rockyftp site and processed to the Data Access Viewer (DAV).

Process Steps:

- 2019-01-01 00:00:00 - Raw Data and Boresight Processing: The boresight for each lift was done individually as the solution may change slightly from lift to lift. The following steps describe the Raw Data Processing and Boresight process: 1) Technicians processed the raw data to LAS format flight lines using the final GPS/ IMU solution. This LAS data set was used as source data for boresight. 2) Technicians first used Quantum Spatial, Inc. proprietary and commercial software to calculate initial boresight adjustment angles based on sample areas selected in the lift. These areas cover calibration flight lines collected in the lift, cross tie, and production flight lines. These areas are well distributed in the lift coverage and

cover multiple terrain types that are necessary for boresight angle calculation. The technicians then analyzed the results and made any necessary additional adjustment until it was acceptable for the selected areas. 3) Once the boresight angle calculation was completed for the selected areas, the adjusted settings were applied to all of the flight lines of the lift and checked for consistency. The technicians utilized commercial and proprietary software packages to analyze how well flight line overlaps matched for the entire lift and adjusted as necessary until the results met the project specifications. 4) Once all lifts were completed with individual boresight adjustment, the technicians checked and corrected the vertical misalignment of all flight lines and also the matching between data and ground truth. The relative accuracy was less than or equal to 7 cm RMSEz within individual swaths and less than or equal to 10 cm RMSEz or within swath overlap (between adjacent swaths). 5) The technicians ran a final vertical accuracy check of the boresighted flight lines against the surveyed checkpoints after the z correction to ensure the requirement of NVA = 19.6 cm 95% Confidence Level (Required Accuracy) was met.

- 2019-01-01 00:00:00 - LAS Point Classification: The point classification was performed as described below. The bare earth surface was manually reviewed to ensure correct classification on the Class 2 (Ground) points. After the bare-earth surface was finalized, it was then used to generate all hydro-breaklines through heads-up digitization. All ground (ASPRS Class 2) LiDAR data inside of the Lake Pond and Double Line Drain hydro-flattened breaklines were then classified to Water (ASPRS Class 9) using TerraScan macro functionality. A buffer of 1 meter was also used around each hydro-flattened feature to classify these ground (ASPRS Class 2) points to Ignored ground (ASPRS Class 20). All Lake Pond Island and Double Line Drain Island features were checked to ensure that the ground (ASPRS Class 2) points were reclassified to the correct classification after the automated classification was completed. All overlap data was processed through automated functionality provided by TerraScan to classify the overlapping flight line data to approved classes. The overlap data was classified using standard LAS overlap bit. These classes were created through automated processes only and were not verified for classification accuracy. Due to software limitations within TerraScan, these classes were used to trip the withheld bit within various software packages. These processes were reviewed and accepted through numerous conference calls and pilot study areas. All data were manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler. Global Mapper was used as a final check of the bare earth dataset. GeoCue was then used to create the deliverable industry-standard LAS files for both the All Point Cloud Data and the Bare Earth. Quantum Spatial, Inc. proprietary software was used to statistical analysis of the classes in the LAS files, on a per tile perform final level to verify final classification metrics and full LAS header information. - 2020-04-15 00:00:00 - The NOAA Office for Coastal Management (OCM) downloaded this data set from this USGS site: ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/ Staged/Elevation/LPC/Projects/ The datasets downloaded were:

USGS LPC AK POW P2 2018 LAS 2019/ Number of files: 3385 USGS_LPC_AK_POW_P2_TL_2018_LAS_2019/ Number of files: 570 The total number of files downloaded and processed was 3955. The data were in UTM Zone 8 (NAD83 2011), meters coordinates and NAVD88 (Geoid12B) elevations in meters. From the provided report and metadata, the data were classified as: 1 - Unclassified, 2 - Ground, 3 - Low Vegetation, 4 - Medium Vegetation, 5 - High Vegetation, 6 -Buildings, 7 - Low Noise, 9 - Water, 10 - Ignored Ground, 17 - Bridge Decks, 18 - High Noise, 21 - Snow. After running an internal script, OCM determined that the following were actually the classifications of the data: 1 - Unclassified, 2 - Ground, 3 -Low Vegetation, 4 - Medium Vegetation, 5 - High Vegetation, 6 - Buildings, 7 - Low Noise, 9 - Water, 10 - Ignored Ground, 11- Noise, 17 - Bridge Decks, 18 - High Noise, 20 - Ignored Ground. In order for the data to be correctly stored in the Data Access Viewer (DAV), the Class 10 points were converted to Class 20, the Class 11 points that were less than 0 meters elevation were converted to Class 7 and the Class 11 points that were greater than 0 meters elevation were converted to Class 18. OCM processed all classifications of points to the Digital Coast Data Access Viewer (DAV). Classes available on the DAV are: 1, 2, 3, 4, 5, 6, 7, 9, 17, 18, 20. Class 3 - Low Vegetation: 0.5 - 2 m above ground Class 4 - Medium Vegetation: 2 - 6 m above ground Class 5 - High Vegetation: greater than 6 m above ground OCM performed the following processing on the data for Digital Coast storage and provisioning purposes: 1. An internal OCM script was run to check the number of points by classification and by flight ID and the gps and intensity ranges. 2. Internal OCM scripts were run on the laz files to convert from orthometric (NAVD88) elevations to ellipsoid elevations using the Geoid12B model, to convert from UTM Zone 8 (NAD83 2011), meters coordinates to geographic coordinates, to convert Class 10 points to Class 20, and Class 11 points that were less than 0 meters elevation to Class 7 and Class 11 points that were greater than 0 meters to Class 18, to assign the geokeys, to sort the data by gps time and zip the data to database and to http.

- 5.1.1. If data at different stages of the workflow, or products derived from these data, are subject to a separate data management plan, provide reference to other plan:
- 5.2. Quality control procedures employed (describe or provide URL of description):

6. Data Documentation

The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation.

- **6.1. Does metadata comply with EDMC Data Documentation directive?**No
 - 6.1.1. If metadata are non-existent or non-compliant, please explain:

Missing/invalid information:

- 1.7. Data collection method(s)
- 3.1. Responsible Party for Data Management
- 5.2. Quality control procedures employed
- 7.1.1. If data are not available or has limitations, has a Waiver been filed?
- 7.4. Approximate delay between data collection and dissemination
- 8.3. Approximate delay between data collection and submission to an archive facility

6.2. Name of organization or facility providing metadata hosting:

NMFS Office of Science and Technology

6.2.1. If service is needed for metadata hosting, please indicate:

6.3. URL of metadata folder or data catalog, if known:

https://www.fisheries.noaa.gov/inport/item/59311

6.4. Process for producing and maintaining metadata

(describe or provide URL of description):

Metadata produced and maintained in accordance with the NOAA Data Documentation Procedural Directive: https://nosc.noaa.gov/EDMC/DAARWG/docs/EDMC_PD-Data_Documentation_v1.pdf

7. Data Access

NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.

7.1. Do these data comply with the Data Access directive?

Yes

7.1.1. If the data are not to be made available to the public at all, or with limitations, has a Waiver (Appendix A of Data Access directive) been filed?

7.1.2. If there are limitations to public data access, describe how data are protected from unauthorized access or disclosure:

7.2. Name of organization of facility providing data access:

NOAA Office for Coastal Management (NOAA/OCM)

7.2.1. If data hosting service is needed, please indicate:

7.2.2. URL of data access service, if known:

https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=9076 https://coast.noaa.gov/htdata/lidar1_z/geoid12b/data/9076

7.3. Data access methods or services offered:

Data is available online for bulk and custom downloads.

7.4. Approximate delay between data collection and dissemination:

7.4.1. If delay is longer than latency of automated processing, indicate under what authority data access is delayed:

8. Data Preservation and Protection

The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.

8.1. Actual or planned long-term data archive location:

(Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended) NCEI CO

- 8.1.1. If World Data Center or Other, specify:
- 8.1.2. If To Be Determined, Unable to Archive or No Archiving Intended, explain:
- 8.2. Data storage facility prior to being sent to an archive facility (if any):

Office for Coastal Management - Charleston, SC

- 8.3. Approximate delay between data collection and submission to an archive facility:
- 8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?

Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection

Data is backed up to tape and to cloud storage.

9. Additional Line Office or Staff Office Questions

Line and Staff Offices may extend this template by inserting additional questions in this section.